Tability is a cheatcode for goal-driven teams. Set perfect OKRs with AI, stay focused on the work that matters.
What are Data Manager OKRs?
The Objective and Key Results (OKR) framework is a simple goal-setting methodology that was introduced at Intel by Andy Grove in the 70s. It became popular after John Doerr introduced it to Google in the 90s, and it's now used by teams of all sizes to set and track ambitious goals at scale.
Formulating strong OKRs can be a complex endeavor, particularly for first-timers. Prioritizing outcomes over projects is crucial when developing your plans.
To aid you in setting your goals, we have compiled a collection of OKR examples customized for Data Manager. Take a look at the templates below for inspiration and guidance.
If you want to learn more about the framework, you can read our OKR guide online.
The best tools for writing perfect Data Manager OKRs
Here are 2 tools that can help you draft your OKRs in no time.
Tability AI: to generate OKRs based on a prompt
Tability AI allows you to describe your goals in a prompt, and generate a fully editable OKR template in seconds.
- 1. Create a Tability account
- 2. Click on the Generate goals using AI
- 3. Describe your goals in a prompt
- 4. Get your fully editable OKR template
- 5. Publish to start tracking progress and get automated OKR dashboards
Watch the video below to see it in action 👇
Tability Feedback: to improve existing OKRs
You can use Tability's AI feedback to improve your OKRs if you already have existing goals.
- 1. Create your Tability account
- 2. Add your existing OKRs (you can import them from a spreadsheet)
- 3. Click on Generate analysis
- 4. Review the suggestions and decide to accept or dismiss them
- 5. Publish to start tracking progress and get automated OKR dashboards

Tability will scan your OKRs and offer different suggestions to improve them. This can range from a small rewrite of a statement to make it clearer to a complete rewrite of the entire OKR.
Data Manager OKRs examples
We've added many examples of Data Manager Objectives and Key Results, but we did not stop there. Understanding the difference between OKRs and projects is important, so we also added examples of strategic initiatives that relate to the OKRs.
Hope you'll find this helpful!
OKRs to improve the overall quality of data across all departments
ObjectiveImprove the overall quality of data across all departments
KRReduce data inconsistencies by 20% through implementing a standardized data entry process
Implement uniform guidelines for data entry across all departments
Perform regular audits to maintain data consistency
Set up training sessions on standardized data entry procedures
KRIncrease data accuracy to 99% through rigorous data validation checks
Routinely monitor and correct data inconsistencies
Train staff on accurate data input methods
Implement a robust data validation system
KRDouble the number of regular data audits to ensure continued data quality
Identify current data audit frequency and benchmark
Communicate, implement, and track new audit plan
Establish new audit schedule with twice frequency
OKRs to streamline and optimize our HR data process
ObjectiveStreamline and optimize our HR data process
KRTrain 100% of HR team on new data processing procedures and software
Identify suitable training courses for new data processing software
Monitor and verify team members' training progress
Schedule training sessions for all HR team members
KRDecrease time spent on HR data processing by 25%
Implement efficient HR automation software
Streamline and simplify the data entry process
Conduct training on effective data management
KRImplement a centralized HR data management system by increasing efficiency by 30%
Identify and purchase a suitable centralized HR data management system
Train HR staff to properly utilize and manage the system
Monitor and adjust operations to achieve 30% increased efficiency
OKRs to enhance Data Quality
ObjectiveEnhance Data Quality
KRImprove data integrity by resolving critical data quality issues within 48 hours
KRIncrease accuracy of data by implementing comprehensive data validation checks
Train staff on proper data entry procedures to minimize errors and ensure accuracy
Regularly review and update data validation rules to match evolving requirements
Create a thorough checklist of required data fields and validate completeness
Design and implement automated data validation checks throughout the data collection process
KRAchieve a 90% completion rate for data cleansing initiatives across all databases
KRReduce data duplication by 20% through improved data entry guidelines and training
Establish a feedback system to receive suggestions and address concerns regarding data entry
Implement regular assessments to identify areas of improvement and address data duplication issues
Provide comprehensive training sessions on data entry guidelines for all relevant employees
Develop concise data entry guidelines highlighting key rules and best practices
OKRs to establish robust Master Data needs for TM
ObjectiveEstablish robust Master Data needs for TM
KRIdentify 10 critical elements for TM's Master Data by Week 4
Research crucial components of TM's Master Data
Compile and categorize data elements by relevance
Finalize list of 10 critical elements by Week 4
KRTrain 80% of the relevant team on handling the Master Data by Week 12
Identify the team members who need Master Data training
Monitor and record training progress each week
Schedule Master Data training sessions by Week 6
KRImplement a system to maintain high-quality Master Data by Week 8
Design system for Master Data management by Week 5
Deploy and test the system by Week 7
Establish Master Data quality standards by Week 2
OKRs to enhance the Precision of Collected Data
ObjectiveEnhance the Precision of Collected Data
KRTrain team on advanced data handling techniques to reduce manual errors by 40%
Schedule dedicated training sessions for the team
Identify suitable advanced data handling courses or trainers
Organize routine follow-ups for skill reinforcement
KRImplement a data validation process to decrease errors by 25%
Develop stringent data validation protocols/rules
Train team members on new validation procedures
Identify current data input errors and their sources
KRDevelop and enforce a 90% compliance rate to designated data input standards
Conduct regular compliance audits
Develop training programs on data standards
Implement benchmarks for data input protocol adherence
OKRs to boost CRM channel revenue-streams
ObjectiveBoost CRM channel revenue-streams
KRImprove existing CRM data quality by 10%
Conduct an audit of current CRM data for inaccuracies
Implement data quality management tools to track inaccuracies
Provide training on data entry and updating practices to staff
KRAchieve 15% increase in CRM channel sales conversions
Implement personalized email marketing strategies for customer engagement
Launch target-based promotions and incentives to boost conversions
Improve CRM channel's user interface for better customer experience
KREnhance CRM customer engagement rate by 20%
Increase training sessions for staff to improve CRM utilization and customer engagement
Develop personalized user experiences based on customer profiles in CRM
Implement a targeted email marketing campaign for existing CRM customers
OKRs to improve EV Program outcomes through competitive and strategic data analysis
ObjectiveImprove EV Program outcomes through competitive and strategic data analysis
KRImplement new processes for swift dissemination of competitive data across teams
Conduct training sessions on the new process for all teams
Formulate a communication strategy for data dissemination
Establish a centralized, accessible platform for sharing competitive data
KRAnalyze and present actionable insights from competitive data to key stakeholders
Collect relevant competitive data from credible sources
Perform extensive analysis on the collected data
Create a presentation illustrating actionable insights for stakeholders
KRIncrease data collection sources by 20% to enhance strategic insights
Monitor and adjust for data quality and consistency
Identify potential new data collection sources
Implement integration with chosen new sources
OKRs to ensure compliance through complete closing of audit findings for data governance
ObjectiveEnsure compliance through complete closing of audit findings for data governance
KRAchieve 100% closure of existing data governance audit findings
Implement corrections and verify completion
Review all existing data governance audit findings
Develop a detailed rectification plan
KRConduct two training sessions on data governance improvements and achieve 90% staff attendance
KRImplement improvements highlighted from audit findings in 80% of relevant areas
Track and document all changes made
Identify areas needing improvement from audit findings
Prioritize implementing changes in 80% of these areas
OKRs to successfully onboard an enterprise data catalog tool
ObjectiveSuccessfully onboard an enterprise data catalog tool
KRComplete tool selection process by comparing at least 4 potential solutions
Finalize and select the most efficient solution
Conduct a thorough comparison of the identified tools
Identify at least four potential tool solutions
KRTransition 70% of eligible data to the new catalog tool
Identify eligible data for the new catalog tool transition
Initiate migration process of 70% eligible data
Verify successful transition and rectify any issues
KRTrain 90% of relevant employees to correctly use the new tool
Implement the training and track progress
Develop a simple, effective training program
Identify employees who need training on the new tool
OKRs to implement SharePoint data destruction plan
ObjectiveImplement SharePoint data destruction plan
KRValidate 100% data destruction by conducting comprehensive checks post-deletion
Document and review destruction processes periodically for compliance
Conduct random audits to ensure complete data destruction
Implement data shredding tools to securely erase important files
KRAchieve 75% of data deletion in the initial phase through automated process
Identify 75% of data to be deleted through AI algorithms
Design an automated process to delete identified data
Implement and test the automated deletion process
KRIdentify all data for destruction by attaining full SharePoint inventory
Classify data suitable for destruction
Initiate SharePoint scan for complete data inventory
Prepare comprehensive data destruction report
Data Manager OKR best practices
Generally speaking, your objectives should be ambitious yet achievable, and your key results should be measurable and time-bound (using the SMART framework can be helpful). It is also recommended to list strategic initiatives under your key results, as it'll help you avoid the common mistake of listing projects in your KRs.
Here are a couple of best practices extracted from our OKR implementation guide 👇
Tip #1: Limit the number of key results
The #1 role of OKRs is to help you and your team focus on what really matters. Business-as-usual activities will still be happening, but you do not need to track your entire roadmap in the OKRs.
We recommend having 3-4 objectives, and 3-4 key results per objective. A platform like Tability can run audits on your data to help you identify the plans that have too many goals.
Tip #2: Commit to weekly OKR check-ins
Don't fall into the set-and-forget trap. It is important to adopt a weekly check-in process to get the full value of your OKRs and make your strategy agile – otherwise this is nothing more than a reporting exercise.
Being able to see trends for your key results will also keep yourself honest.
Tip #3: No more than 2 yellow statuses in a row
Yes, this is another tip for goal-tracking instead of goal-setting (but you'll get plenty of OKR examples above). But, once you have your goals defined, it will be your ability to keep the right sense of urgency that will make the difference.
As a rule of thumb, it's best to avoid having more than 2 yellow/at risk statuses in a row.
Make a call on the 3rd update. You should be either back on track, or off track. This sounds harsh but it's the best way to signal risks early enough to fix things.
Save hours with automated OKR dashboards

The rules of OKRs are simple. Quarterly OKRs should be tracked weekly, and yearly OKRs should be tracked monthly. Reviewing progress periodically has several advantages:
- It brings the goals back to the top of the mind
- It will highlight poorly set OKRs
- It will surface execution risks
- It improves transparency and accountability
Spreadsheets are enough to get started. Then, once you need to scale you can use Tability to save time with automated OKR dashboards, data connectors, and actionable insights.
How to get Tability dashboards:
- 1. Create a Tability account
- 2. Use the importers to add your OKRs (works with any spreadsheet or doc)
- 3. Publish your OKR plan
That's it! Tability will instantly get access to 10+ dashboards to monitor progress, visualise trends, and identify risks early.
More Data Manager OKR templates
We have more templates to help you draft your team goals and OKRs.
OKRs to successfully complete annual security training
OKRs to enhance system security for robust protection
OKRs to successfully transition from monolith to microservices architecture
OKRs to develop a comprehensive public engagement strategy
OKRs to enhance efficiency in printing production lineup
OKRs to within budget